Luso Academia

Início » 00 Geral » Análise Funcional -Aula 3

Análise Funcional -Aula 3

— 1.4. Solução dos Problemas Propostos da aula 2 —

Começaremos a aula de hoje solucionando antes os problemas propostos na aula anterior, para quem não teve acesso a aula anterior nós recomendamos que o faça. Para o bem do leitor, muitas vezes darei apenas soluções parciais aos problemas para que dessa forma possas preencher os detalhes que faltam e completar os argumentos.

5.(solução) Basta tomarmos {x=(x_{1},\cdots,x_{n},0,0,\cdots)} e {y=(1,0,0,\cdots)} e substituirmos na desigualdade de Cauchy.

6.(solução) Podemos tomar {x_{n}=(\frac{1}{\ln 2},\frac{1}{\ln 3},\frac{1}{\ln 4},\cdots)=\{\frac{1}{\ln n}\}_{n=2}^{\infty}} e aplicarmos o critério da razão, i.e., para provarmos que ela tende a zendo basta calcularmos o limite da razão com uma sequência que tende a zero. Ao solucionarmos este problema é importante lembrarmo-nos dos conceitos de série e convergência de séries.

7.(solução) Basta tomarmos a conhecida sequencia {x_{n}=\{\frac{1}{n}\}_{n=1}^{\infty}}.

8.(solução) Para a parte a) basta usarmos o facto de que {\delta(A)} é uma cota superior do conjunto {\{d(x,y): x,y\in A\}} e usarmos a propriedade {A\subset B \Longrightarrow \sup A\leq \sup B}.

b)A primeira implicação é facíl, já que se {\sup \{d(x,y): x,y\in A\}=0\Longrightarrow x=y}. A segunda implicação é trivial.

9.(solução) a) Vamos demonstrar apenas que {d_{1}(x,y)} satisfaz a desigualdade triângular.

Sejam {x,y, z\in X} temos:

\displaystyle d(x,y)=\sqrt{d_{1}^{2}(x_{1},y_{1})+d_{2}^{2}(x_{2},y_{2})}

\displaystyle \leq \sqrt{d_{1}^{2}(x_{1},z_{1})+d_{1}^{2}(z_{2},y_{1})+d_{2}^{2}(x_{2},z_{2})+d_{1}^{2}(z_{2},y_{2})}

\displaystyle \leq d(x,z)+d(z,y)

no ultimo passo usamos a desigualdade {\sqrt{a+b}\leq \sqrt{a}+\sqrt{b}}.

b) Para a segunda métrica também provaremos apenas a desigualdade triângular:

Uma dica do Kreyszig, basta aplicar o seguinte,

\displaystyle \max_{k=1,2}d_{k}(x_{k},y_{k})

\displaystyle \leq \max_{k=1,2}[d_{k}(x_{k},z_{k})+d_{k}(z_{k},y_{k})]

\displaystyle \leq \max_{i=1,2} d_{i}(x_{i},z_{i})+\max_{j=1,2}d_{j}(x_{j},y_{j})

10.(solução) Muito simples….

11.(solução) Para a desigualdade triângular use a a desigualdade {\sqrt{a+b}\leq\sqrt{a}+\sqrt{b}}.

— 1.5. Topologia Básica dos Espaços Métricos —

Em geral, existem duas maneiras de se introduzir uma extrutura topologica num conjunto. A primeira, usando o conceito primitivo de conjunto aberto e a segunda pelo conceito de distância ou métrica. Nós vamos seguir a segunda abordagem.

Definição 6 Dado {x \in (X,d)} e {r>0}, temos as seguintes definições:

  • (Bola aberta) {B(x,r)=\{y\in X:d(x,y)<r\}}.
  • (Bola fechada) {\overline{B}(x,r)=\{y\in X:d(x,y)\leq r\}}
  • (Esfera){S(x,r)=\{y\in X:d(x,y)=r\}}
Comentário 7 É enganoso pensarmos, conforme aconselha o Kreyszig, que as bolas(abertas ou fechadas) em espaços métricos arbitrários não euclidianos possuem as mesmas propriedades que as bolas ou esferas em {\mathbb{R}^{3}}. Por exemplo, nos espaços métricos que surgem a partir da métrica discreta, espaços discretos, uma esfera pode ser vazia, i.e., {S(x,r)=\{y\in X:d(x,y)=r\}=\emptyset }, para isso, basta tomarmos {r\neq1}.
Exemplo 7 Em {\mathbb{R}}, as bolas abertas e fechadas são os intervalos abertos (resp. fechados), i.e., da forma: {B(x,r)=(x-r,x+r)}.

— 1.5.1. Propiedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 2 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 3 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

Proposição 4 Sejam {B(x,r_{1})} e {B(y,r_{2})}, tais que {B(x,r_{1})\cap B(y,r_{2})\neq \emptyset}. Se {a\in B(x,r_{1})\cap B(y,r_{2})}, então existe uma bola aberta de centro {a} contida na intersecção {B(x,r_{1})\cap B(y,r_{2})}.

Demonstração: Seja {a\in B(x,r_{1})\cap B(y,r_{2})}, então pela Proposição anterior existe {B(a,r_{3})}, tal que {B(a,r_{3})\subset B(x,r_{1})} e {B(a,r_{3})\subset B(y,r_{2})}. Seja {r=\min\{r_{1},r_{2}\}}, então

\displaystyle B(a,r)\subset B(x,r_{1})\cap B(y,r_{2}).

\Box

Proposição 5 Sejam {B(x_{1},r_{1})} e {B(x_{2},r_{2})} duas bolas abertas. Se {r_{1}+r_{2}\leq d(x_{1},x_{2})}, então

\displaystyle B(x_{1},r_{1})\cap B(x_{2},r_{2})=\emptyset.

Demonstração: Suponhamos pelo contrário que {B(x_{1},r_{1})\cap B(x_{2},r_{2})\neq\emptyset}, então {\exists x\in B(x_{1},r_{1})\cap B(x_{2},r_{2})}, logo

\displaystyle d(x,y)\leq d(x,x_{1})+d(x_{2},x)\leq r_{1}+r_{2}.

\Box

Proposição 6 O diâmetro de uma bola {B(x,r)} satisfaz:

\displaystyle \delta(B(x,r))\leq 2r

Demonstração: Sejam {y,z\in B(x,r)\Longrightarrow d(x,y)<r} e {d(z,x)<r}, então

\displaystyle d(y,z)\leq d(z,x)+d(y,x)<2r

que é uma cota superior do conjunto das distâncias entre dois pontos, logo:

\displaystyle \delta(B(x,r))=\sup_{y,z\in B}d(x,y)\leq 2r.

\Box

Definição 7 Dado um conjunto {A\subset(X,d)}. Dizemos que {x} é um ponto interior de {A} se para todo {r>0} existe uma bola {B(x,r)} tal que:

\displaystyle B(x,r)\subset A

O conjunto de todos os pontos interiores de {A}, denotado por {int(A)} ou {A^{\circ}}, ou seja, {A^{\circ}=\{x\mid x \text{ é um ponto interior de }A\}}. Um conjunto é fechado se o seu complementar é aberto.

Teorema 7 A colecção de todos os subconjuntos abertos de {X} é uma topologia em {X}.

Demonstração: Deixada para o leitor. \Box

Comentário 8 Muitos estudantes, pelas definições acima podem ser levados a pensar que se um conjunto não é fechado então deve ser aberto. Infelizmente este é um grande absurdo, e.g., {\emptyset} e {X} são ao mesmo tempo abertos e fechados.

— 1.5.2. Propriedades dos Conjuntos Abertos —

Proposição 8 Toda bola aberta é um conjunto aberto.

Demonstração: Ver a Proposição 1.3. \Box

Proposição 9 A intersecção de dois conjuntos abertos é um conjunto aberto.

Demonstração: Sejam {A_{1}} e {A_{2}} dois conjuntos abertos e {A_{3}=A_{1}\cap A_{2}}. Se {x\in A_{1}\cap A_{2}\Longrightarrow \exists B(x,r_{1}),B(x,r_{2})}, basta tomarmos {r=\min\{r_{1},r_{2}\}}, daí {B(x,r)\subset A_{1}\cap A_{2}=A_{3}}. \Box

Uma generalização da proposição acima é a seguinte:

Proposição 10 Sejam {A_{1}, A_{2}, \cdots,A_{n}} abertos, então {\cap_{k=1}^{n}A_{k}} é um aberto.

Demonstração: Seja {x \in \cap_{k=1}^{n}A_{k} \Longrightarrow x\in A_{k}} para todo {k}. Então existem {r_{k}>0} tais que {B(x,r_{k})\subseteq A_{k}}. Se {r=\min\{r_{1},\cdots,r_{n}\}} então {r>0} e {B(x,r)\subseteq\cap_{k=1}^{n}A_{k}} é um aberto. \Box

Comentário 9 Em geral, a intersecção arbitrária de abertos não é um aberto, basta tomarmos, por exemplo, em {\mathbb{R}} o conjunto {A_{n}=\{x\in \mathbb{R}:-\frac{1}{n}<x<\frac{1}{n}, n\in \mathbb{N}\}}.
Proposição 11 Sejam {A_{1}, A_{2}, \cdots,A_{n}} abertos, então {\cup_{i\in I}A_{i}} é um aberto, onde {I} é um conjunto enumerável.

Demonstração: Deixada como presente para o leitor. \Box

Definição 8 Sejam {(X,d)} e {(Y,\rho)} dois espaços métricos. Uma aplicação {f:X\longrightarrow Y} é contínua no ponto {x_{0}} se para todo {\epsilon >0} existe um {\delta >0} tal que {\rho(f(x),f(x_{0})<\epsilon} para todo {x} satisfazendo {d(x,x_{0})<\delta}, f é dita ser contínua se é contínua em cada ponto de {X}.
Teorema 12 Uma aplicação {f} de um espaço métrico {X} em um espaço métrico {Y} é contínua se e só se a imagem inversa de qualquer subconjunto aberto de {Y} é um subconjunto aberto de {X}.

Demonstração: Deixada para o leitor. \Box

Definição 9 Seja {E\subset X}. {x_{0}\in X} (pode ou não pertencer a {E}) é chamado ponto de acumulação ou ponto limite de {E} se em toda vizinhança de {x_{0}} existe pelo menos um ponto {y\in E} distinto de {x_{o}}. O conjunto formado por todos os pontos de acumulação de {E} é chamado de fecho de {E} e é denotado por {\overline{E}}. Um subconjunto {E} de um espaço métrico {X} é denso em {X} se

\displaystyle  \overline{E}=X.

Um espaço métrico {X} é separavel se contém um subconjunto denso enumerável. Como recomendação final, propomos que o leitor consulte um bom livro de Análise Funcional e resolva todos os problemas propostos relacionados ao tema tratado hoje.


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers gostam disto: