Início » 00 Geral » Entenda matematicamente a ampliação de imagem do espelho. Espelhos esféricos 2.

Entenda matematicamente a ampliação de imagem do espelho. Espelhos esféricos 2.

Estatística do blog

  • 275,688 académicos

De modo a receber actualizações do nosso blog via email clique em Seguir.

Junte-se a 777 outros seguidores

— 2.7.9. Fórmula do espelho esférico e convenção de sinais —

Quando um objecto está diante de um espelho, definimos {d}, a distancia entre o objecto e o espelho e {d'} a distância entre a imagem e o espelho. A fórmula do espelho esférico (ou equação de Gauss) permite determinar de forma analítica as características da imagem. Esta fórmula relaciona entre si as grandezas {d}, {d'} e {f} do espelho esférico. Escolhemos sobre o eixo principal do espelho, o sentido da luz incidente como sentido positivo e sobre o eixo perpendicular ao eixo principal, o sentido apresentado para cima como sentido positivo.

Figura 41: Dedução da Equação de Gauss. [5]

Vamos imaginar que o objecto está sobre o eixo principal, a uma distancia superior ao raio, num ponto {P} (Ver fig. 41). O Ponto {P} é o objecto e o Ponto {P'} será a imagem. Podemos ver então que qualquer raio que incidir sobre o espelho passando pelo ponto {P}, quando for refletido, irá passar pelo ponto {P'}. Vamos analisar o caso de um raio incidente que seja refletido no ponto {B} do espelho.

No triângulo {PCB}, o ângulo interno no vértice {C} é {180^0-\phi}. A soma dos ângulos interno deste triângulo deve ser {180^0}, então {\alpha+180^0-\phi+\theta=180^0 }, o que nos dá :

\displaystyle \alpha+\theta=\phi. \ \ \ \ \ (28)

 

De modo análogo, no triângulo {CP'B}, o ângulo interno no vértice {P'} é {180^0-\beta}. A soma dos ângulos internos deve ser {180^0}, então {\phi+180^-\beta+\theta=180^0}, o que nos dá:

\displaystyle \theta=\beta-\phi. \ \ \ \ \ (29)

 

Substituindo 29 em 28, obtemos:

\displaystyle \alpha+\beta=2.\phi. \ \ \ \ \ (30)

 

Analisando os triângulos rectângulos, temos {tg\alpha=\frac{h}{d-\delta} }, {tg\beta=\frac{h}{d'-\delta} } e {tg\phi=\frac{h}{R-\delta} }. Para ângulos {\alpha} muitos pequenos, os ângulos {\beta} e {\phi} também o serão. Nestas circunstâncias, serão válidas as aproximações {sen\alpha\approx tg\alpha \approx \alpha} e {\delta\approx 0}. O mesmo será válido para {\beta} e para {\phi}.

Logo, as relações no triângulo reduzir-se-ão para:

\displaystyle \alpha=\frac{h}{d} \ \ \ \ \ (31)

 

\displaystyle \beta=\frac{h}{d'} \ \ \ \ \ (32)

 

\displaystyle \phi=\frac{h}{R} \ \ \ \ \ (33)

 

Combinando as equações 31, 32 e 33 com a equação 30, e eliminando {h}, obtemos:

\displaystyle \frac{1}{d}+\frac{1}{d'}=\frac{2}{R} \ \ \ \ \ (34)

 

Como {f=R/2\Rightarrow R=2f}, então podemos escrever:

\displaystyle \frac{1}{d}+\frac{1}{d'}=\frac{1}{f} \ \ \ \ \ (35)

 

Esta é a equação do espelho.

Nota: quando se aplica esta equação, é preciso recordar as seguintes convenções de sinais:

  • Se o objecto é real: {d > 0}.
  • Se o objecto é virtual: {d <0}.
  • Se a imagem é real: {d' > 0}.
  • Se a imagem é virtual: {d' <0}.
  • Se o espelho é côncavo: {f > 0}.
  • Se o espelho é convexo: {f <0}.

Podemos também deduzir a relação entre {R} e {f} a partir desta equação. Raios paralelos ao eixo principal são obtidos quando o objecto está no infinito, ou seja, {d=\infty} e a imagem será formada no foco, ou seja, {d'=f}. Substituindo isso na equação 35, obtemos:

\displaystyle \frac{1}{\infty}+\frac{1}{f}=\frac{2}{R} \Rightarrow f=\frac{R}{2} \ \ \ \ \ (36)

 

Podemos ainda deduzir a relação entre distâncias num espelho plano. Um espelho plano pode ser entendido como um espelho esférico com raio {\infty}, logo:{ \frac{1}{d}+\frac{1}{d'}=\frac{2}{\infty} \Rightarrow d=-d'}. Num espelho plano, a imagem está sempre situada no lado oposto ao objecto. Se o objecto é real, a imagem é virtual e se o objecto é virtual, então a imagem é real. A distância é igual em módulo… Mas tudo isso já foi demonstrado graficamente.

— 2.7.10. Ampliação linear do objecto —

Por definição, a ampliação linear do objecto é a razão entre o tamanho da imagem [medido transversalmente ao eixo principal) e o tamanho do objecto(também transversalmente). Se chamarmos de {h} para a altura do objecto e {h'} para a altura da imagem, então a ampliação será:

\displaystyle K=\frac{h '}{h} \ \ \ \ \ (37)

O termo ampliação poder gerar alguma confusão se associamo-lo a ideia de aumento. Em Óptica Geométrica, a ampliação refere-se apenas a razão entre o tamanho da imagem e o tamanho do objecto, não importando se houve aumento ou diminuição. A ampliação também pode ser relacionada com outros parâmetros. Usando a congruência dos triângulos {ABV} e {A'B'V} da figura 2, temos:

\displaystyle K=-\frac{d '}{d} \ \ \ \ \ (38)

O sinal deve ser respeitado de acordo com a convenção de sinais. Se {h>0} então o objecto é directo (para cima) e se {h<0} então é invertido. o mesmo se passa com a imagem.

Nota:

  • Se {K} é positiva, a imagem {A'B'} tem o mesmo sentido que o objecto {AB}.
  • Se {K} é negativa, a imagem {A'B'} tem sentido contrário ao do objecto {AB}.
  • Se {\mid K \mid >1} a imagem é maior que o objecto.
  • Se {\mid K \mid <1} a imagem é menor que o objecto.

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.].

Anúncios

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: